C.I. PY184 - Pigment Yellow 184

Futa International
Chemwatch: 5241-19
Version No: 2.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

<table>
<thead>
<tr>
<th>Product Identifier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product name</td>
<td>C.I. PY184 - Pigment Yellow 184</td>
</tr>
<tr>
<td>Synonyms</td>
<td>LYSOPAC Yellow 6607B., LYSOPAC Yellow 6611B., LYSOPAC Yellow 6613P., LYSOPAC Yellow 6615B., LYSOPAC Yellow 6616B., LYSOPAC Yellow 6713P., LYSOPAC Yellow 6716B.</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses | Colourant.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Futa International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Suite 3+4, 10A Atherton Road Oakleigh VIC 3166 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 407 338 225</td>
</tr>
<tr>
<td>Fax</td>
<td>Not Available</td>
</tr>
<tr>
<td>Website</td>
<td>Not Available</td>
</tr>
<tr>
<td>Email</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>+61 407 338 225</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Label elements

<table>
<thead>
<tr>
<th>GHS label elements</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

SIGNAL WORD

<table>
<thead>
<tr>
<th>NOT APPLICABLE</th>
</tr>
</thead>
</table>

Hazard statement(s)

<table>
<thead>
<tr>
<th>Not Applicable</th>
</tr>
</thead>
</table>

Precautionary statement(s)

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Storage</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Disposal</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Continued...
Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>112764-76-8</td>
<td><=1</td>
<td>C.I. Pigment Yellow 184</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

Inhalation
- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Approach containers suspected to be hot.
- Wear a protective glove when inducing vomiting by mechanical means.

Ingestion
- **IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.**
 - For advice, contact a Poisons Information Centre or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
 - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
 - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Indication of any immediate medical attention and special treatment needed

- Treat symptomatically.
- For advice, contact a Poisons Information Centre or a doctor.
- For advice, contact a Poisons Information Centre or a doctor.
- Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - **INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS.** Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
 - **NOTE:** Wear a protective glove when inducing vomiting by mechanical means.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

| Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result |

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Solid which exhibits difficult combustion or is difficult to ignite.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion.
- Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can also be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1 metre/sec.
- Combustion products include:
carbon monoxide (CO),
carbon dioxide (CO2),
nitrogen oxides (NOx),
other pyrolysis products typical of burning organic material.

HAZCHEM Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Wear impervious gloves and safety glasses.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Do NOT use air hoses for cleaning.
- Place spilled material in clean, dry, sealable, labelled container.

Major Spills
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Control personal contact with the substance, by using protective equipment and dust respirator.
- Prevent spillage from entering drains, sewers or water courses.
- Avoid generating dust.
- Sweep, shovel up. Recover product wherever possible.
- Put residues in labelled plastic bags or other containers for disposal.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dust.
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA Standard 684, dust layers 1/32 in (0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

Other information
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:
Consider storage in bunded areas—ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).

Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

<table>
<thead>
<tr>
<th>Suitable container</th>
<th>Lined metal can, lined metal pail/can.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plastic pail.</td>
</tr>
<tr>
<td></td>
<td>Polyliner drum.</td>
</tr>
<tr>
<td></td>
<td>Packing as recommended by manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Check all containers are clearly labelled and free from leaks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage incompatibility</th>
<th>Avoid contamination of water, foodstuffs, feed or seed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avoid reaction with oxidising agents</td>
</tr>
</tbody>
</table>

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.I. PY184 - Pigment Yellow 184</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.I. Pigment Yellow 184</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of:

1. Particle dust respirators, if necessary, combined with an absorption cartridge;
2. Filter respirators with absorption cartridge or canister of the right type;
3. Fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant

<table>
<thead>
<tr>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Lower end of the range

1. Room air currents minimal or favourable to capture
2. Contaminants of low toxicity or of nuisance value only.
3. Intermittent, low production.
4. Large hood or large air mass in motion

Upper end of the range

1. Disturbing room air currents
2. Contaminants of high toxicity
3. High production, heavy use
4. Small hood—local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.
Eye and face protection

- Safety glasses with side shields
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adhesion for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59; [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

- Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity.

- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

- It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will depend on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

- Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

 - polyurethane,
 - nitrile rubber,
 - butyl rubber.
 - fluoroelastomer.
 - polychloroprene.

- Gloves should be examined for wear and/or degradation constantly.

Hands/feet protection

- Skin protection

- See Hand protection below

- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

- Use approved positive flow mask if significant quantities of dust becomes airborne.

- Try to avoid creating dust conditions.

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>Air-line*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+x ES</td>
<td>-</td>
<td>-</td>
<td>PAPR-P3</td>
</tr>
<tr>
<td>Air-line*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- * Negative pressure demand: ** Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals. K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(when below 65 degC)

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

- Use approved positive flow mask if significant quantities of dust becomes airborne.

- Try to avoid creating dust conditions.

Continued...
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Odourless yellow coloured dry powder; insoluble in water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>6.5</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>8-9 (50 g/l)</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>VOC g/L</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity
- See section 7

Chemical stability
- Product is considered stable and hazardous polymerisation will not occur.

Possibility of hazardous reactions
- See section 7

Conditions to avoid
- See section 7

Incompatible materials
- See section 7

Hazardous decomposition products
- See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Ingestion
The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Skin Contact
The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Eye
Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

Chronic
Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

C.I. PY184 - Pigment Yellow 184

<table>
<thead>
<tr>
<th>Route</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (Rat) LD50:</td>
<td>>2000 mg/kg[^2]</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

C.I. Pigment Yellow 184

<table>
<thead>
<tr>
<th>Route</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation (rat) LC50:</td>
<td>>5.1 mg/4h[^2]</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oral (rat) LD50:</td>
<td>>5000 mg/kg[^2]</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.
2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Continued...
SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Legend:
- Data available but does not fill the criteria for classification
- Data available to make classification
- Data Not Available to make classification

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant: NO
- HAZCHEM: Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

- Not Applicable

SECTION 15 REGULATORY INFORMATION

C.I. PIGMENT YELLOW 184(112764-76-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

- National Inventory Status
 - Australia - AICS: Y
Canada - DSL Y
Canada - NDSL N (C.I. Pigment Yellow 184)
China - IECSC Y
Europe - EINEC / ELINCS / NLP Y
Japan - ENCS Y
Korea - KECI Y
New Zealand - NZIoC Y
Philippines - PICCS Y
USA - TSCA Y

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.I. Pigment Yellow 184</td>
<td>112764-76-8, 14059-33-7, 126729-57-5, 14059-34-8</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
ODV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.